In this paper, a physically motivated micromechanical model for connective soft tissues like tendon and ligament is presented. A representative volume element (RVE) is introduced based on the crimped pattern of collagen fiber in the tissue. In order to investigate the macroscopic behavior of tissue, numerical homogenization and appropriate periodic boundary conditions are used. Neglecting the effects of nano scale structures and properties on tissues macroscopic behavior leads to linear transversely isotropic model for collagen fibers. Comparison of obtained result with available experimental one, shows that this assumption leads to inaccurate results. Including the effects of nano scale structures into the presented model leads to a nonlinear transversely isotropic constitutive model for collagen fibers which leads to results that are in good agreement with experimental results.

This content is only available via PDF.
You do not currently have access to this content.