The use of experimental and numerical investigation to predict the aerodynamic characteristics of road vehicles is a standard practice in automotive design and development. Fundamental research has been often conducted on generic models with limited applicability to realistic cars. The DrivAer model developed in TU München possesses more representative car features. To encourage the use of the DrivAer model in independent research work, the experimental results and some numerical results were published.

In this paper, a new developed wind tunnel setup of the DrivAer model was introduced. A new suspension system was designed in such a way that drag and lift force could be measured whilst the wheels are rolling on the moving ground without wheel struts (In this paper we call it wheels-on setup). The more close-truth experimental results of different rear end configurations were obtained. The lift force of the total model was firstly obtained. Additionally, the influences of the wheel struts and top sting were studied.

Numerical investigation for performing finite-volume-based Reynolds-averaged Navier-Stokes (RANS) for the prediction of aerodynamic forces of passenger vehicles developed was presented, using the open-source CFD toolbox OpenFOAM®.

Validation of the predictions was done on the basis of detailed comparisons to experimental wind tunnel data, both of the basic body (wheelhouse covered and without wheels) and the new wheels-on model. Results of drag coefficient were found to compare favourably to the experiments.

This content is only available via PDF.
You do not currently have access to this content.