This paper discusses a steering rack force estimation scheme using test-rig generated models. In addition to friction identification, a model of the electric power steering system is identified by the use of the instrumented test-rig. It turns out that the friction in the steering system is highly load-dependent, asymmetric with respect to speed, and shows no Stribeck effects. A LuGre model is adopted and fitted to approximate the measured dynamic friction. Consequently, this model is used in a friction compensator which is combined with a linear disturbance observer to estimate the steering rack force. The proposed estimation scheme is analyzed via evaluated system simulations and experiments on the steering system test-rig. Finally, considering the fact that the friction level varies with each steering device manufactured and installed, the paper discusses algorithms for friction level adaptation.

This content is only available via PDF.
You do not currently have access to this content.