This paper presents the use of Finite Element Analysis (FEA) software in recreating a full frontal barrier impact test with a 50th percentile male hybrid III dummy to investigate various passenger vehicle airbag deployment times for the development of an airbag trigger sensor. Results for the physical full frontal barrier impact test where prepared by MGA Research Corporation with a 2007 Toyota Yaris. Using a nonlinear transient dynamic FEA software, a virtual full frontal barrier impact test was created to reproduce the physical results and trends experienced in the physical crash test found in a report by the National Highway Traffic Safety Administration (NHTSA) 5677. The results of the simulation were compared to the results of the physical crash which produced similar trends, but not the same values. The simulation was then used in testing different passenger vehicle airbag deployment times to see its results on specific occupant injury criteria’s; Head Injury Criterion (HIC), Chest Compression Criterion (CC). Four different vehicle speeds where used; 20 km/h, 40 km/h, 56 km/h, and 90 km/h in conjunction with a range of +/− 6 milliseconds in the airbag deployment timing. Results of the airbag deployment timing showed that trends of faster airbag deployment times resulted in lower values for HIC and CC. Following these trends, suggestions for airbag deployment trigger distances were developed to aid in creation of an advanced airbag deployment sensor or crash sensor. While the simulation has yet to be validated, the trends may be assessed and actual values may differ.

This content is only available via PDF.
You do not currently have access to this content.