Effective electrification of automotive vehicles requires designing the powertrain’s configuration along with sizing its components for a particular vehicle type. Employing planetary gear systems in hybrid electric vehicle powertrain architectures allows various architecture alternatives to be explored, including single-mode architectures that are based on a fixed configuration and multi-mode architectures that allow switching power flow configuration during vehicle operation. Previous studies have addressed the configuration and sizing problems separately. However, the two problems are coupled and must be optimized together to achieve system optimality. An all-in-one system solution approach to the combined problem is not viable due to the high complexity of the resulting optimization problem. In this paper we propose a partitioning and coordination strategy based on Analytical Target Cascading for simultaneous design of powertrain configuration and sizing for given vehicle applications. The capability of the proposed design framework is demonstrated by designing powertrains with one and two planetary gears for a mid-size passenger vehicle.

This content is only available via PDF.
You do not currently have access to this content.