This paper compares the economic viability and performance outcomes of two different thermoelectric device architectures to determine the advantages and appropriate use of each configuration. Hybrid thermoelectric coolers employ thin-film thermoelectric materials sandwiched between a plastic substrate and formed into a corrugated structure. Roll-to-roll manufacturing and low-cost polymer materials offer a cost advantage to the hybrid architecture at the sacrifice of performance capabilities while conventional bulk devices offer increased performance at a higher cost. Performance characteristics and cost information are developed for both hybrid and conventional bulk single-stage thermoelectric modules. The design variables include device geometry, electrical current input, and thermoelectric material type. The trade-offs between cooling performance and cost will be explored and the thermoelectric system configuration analyzed for both hybrid and conventional bulk thermoelectric coolers.

This content is only available via PDF.
You do not currently have access to this content.