In present paper, nonlinear dynamic model has been developed for cylindrical roller bearings. The Hertzian contact theory is used to derive a two degree of freedom model which considers nonlinearity due to clearance. The nonlinear dynamic behaviour of cylindrical roller bearing has been studied with varying number of rollers supporting load. The modified Newmark-β numerical integration technique has been used to solve the equations of motion. All the results are presented in the form of Fast Fourier Transforms and Poincarè maps. As the number of rollers is increases, system becomes stiffer. The results show that the number of rollers supporting load is one of the important parameters affecting the dynamics of rotor bearing system. Therefore, it must be considered at the design stage to understand the dynamic characteristics and stability of the rotor bearing system.

This content is only available via PDF.
You do not currently have access to this content.