On January 5th 2014 the Indian Space Research Organization successfully launched its Geo Stationary Launch Vehicle with an indigenous Cryogenic engine. One of the main design aspects is in its rotor dynamics to predict the peak amplitude unbalance whirl and the speed at which it occurs. This engine has several key technologies, one of them specifically is coupled rotors, viz., Turbine, Hydrogen Pump and Oxidizer supported on seven nonlinear rolling element bearings and several seals all mounted in a flexible casing. The conventional beam model initially adopted failed to predict the speed at which peak unbalance response occurs.

The rotor system was first developed in a solid model to determine the critical speeds of the rotor alone considering its 40000 rpm centrifugal loads with bearings treated as linear. Then, unbalance whirl of this rotor system was developed by codes specially developed for this purpose. The rolling element bearings are found to be highly nonlinear with large bearing radial forces at critical speeds. An iterative procedure was developed to match the bearing force and unbalance whirl to determine peak amplitude response speeds. Subsequently, seals and the influence of casing and internal pressures were accounted in the analysis. This paper describes the advanced rotor dynamic design of this pump.

This content is only available via PDF.
You do not currently have access to this content.