Static deflection and free nonlinear vibrations of thin square plate made of biological material are investigated. The involved physical nonlinearity is described through Neo-Hookean, Mooney-Rivlin and Ogden hyperelastic laws; geometrical nonlinearity is modeled by Novozhilov nonlinear shell theory. The problem is solved by sequentially constructing the local models that describe the behavior of plate in the vicinity of a certain static configuration. These models are the systems of ordinary differential equations with quadratic and cubic nonlinear terms in displacement, which allows application of techniques used in analysis of thin-walled structures of physically linear materials. The comparison of static and dynamic results obtained with different material models is carried out.

This content is only available via PDF.
You do not currently have access to this content.