In this paper, the kinematics and inverse dynamics of a 6-dof full decoupling parallel manipulator is presented. The forward and inverse kinematics solution can be easily obtained and simplify the real-time control due to 6 dof motion full decoupling. Three motors are embedded into the moving platform to realize rotational motion, simple kinematics and isotropic configurations due to the motors and speed reducers have a lower weight. An effective inverse dynamics of the manipulator is derived by the principle of virtual work. The existence of speed reducer for motors have advantages of decreasing mechanical couplings between axes and the full varying inertias are not directly onto each motor output shaft. Since the presence of speed reducer and in order to improve dynamic model accuracy, the inertia of motor rotor-reducer should be computed. Finally, numerical simulation of the inverse dynamics provides that the actuating torques created by gravity, velocity, acceleration and decoupling torque, coupling torque have been computed.

This content is only available via PDF.
You do not currently have access to this content.