This paper deals with the dimensional synthesis of a novel parallel manipulator for medical applications. This parallel mechanism has a novel 2T2R mobility derived from the targeted application of needle manipulation. The kinematic design of this 2T2R manipulator and its novelty are illustrated in relation to the percutaneous procedures. Due to the demanding constraints on its size and compactness, achieving a large workspace especially in orientation, is a rather difficult task. The workspace size and kinematic constraint analysis are considered for the dimensional synthesis of this 2T2R parallel mechanism. A dimensional synthesis algorithm based on the screw theory and the geometric analysis of the singularities is described. This algorithm also helps to eliminate the existence of voids inside the workspace. The selection of the actuated joints is validated. Finally, the dimensions of the structural parameters of the mechanism are calculated for achieving the required workspace within the design constraints of size, compactness and a preliminary prototype without actuators is presented.

This content is only available via PDF.
You do not currently have access to this content.