Three-dimensional numerical simulations, using the sharp-interface immersed boundary method, are carried out to investigate the effect of aneurysm shape on the hemodynamics of intracranial aneurysm. In our previous work [1] only a single geometry of an aneurysm was tested, but here two three-dimensional geometries are tested by reconstruction from three-dimensional rotational angiography of a human subject [2]. The results support our previous hypothesis [1], i.e., when the vortex formation time scale at the parent artery is smaller than the transportation time scale across the aneurysm neck, the flow aneurysm dome is dominated by a dynamic, unsteady vortex formation.

This content is only available via PDF.
You do not currently have access to this content.