Design decision-making involves trade-offs between many design variables and attributes, which can be difficult to model and capture in complex engineered systems. To choose the best design, the decision-maker is often required to analyze many different combinations of these variables and attributes and process the information internally. Trade Space Exploration (TSE) tools, including interactive and multi-dimensional data visualization, can be used to aid in this process and provide designers with a means to make better decisions, particularly during the design of complex engineered systems. In this paper, we investigate the use of TSE tools to support decision-makers using a Value-Driven Design (VDD) approach for complex engineered systems. A VDD approach necessitates a rethinking of trade space exploration. In this paper, we investigate the different uses of trade space exploration in a VDD context. We map a traditional TSE process into a value-based trade environment to provide greater decision support to a design team during complex systems design. The research leverages existing TSE paradigms and multi-dimensional data visualization tools to identify optimal designs using a value function for a system. The feasibility of using these TSE tools to help formulate value functions is also explored. A satellite design example is used to demonstrate the differences between a VDD approach to design complex engineered systems and a multi-objective approach to capture the Pareto frontier. Ongoing and future work is also discussed.

This content is only available via PDF.
You do not currently have access to this content.