To achieve a precise and controlled laser process, a thorough analysis of the thermal behavior of the material is necessary. The knowledge of the thermal cycles is important to ascertain suitable processing parameters, thus improving surface properties when the alloys are laser irradiated. In the present paper, a numerical simulation of the laser hardening process has been developed using the finite element (FE) code ABAQUS™ to solve the heat transfer equation inside the treated material (AISI 4140 steel). The thermal analysis is based on Jaeger’s classical moving heat source method by considering the laser beam as a moving plane (band/disc) heat source and the target material is a semi-infinite solid. However, the FE model, used to solve the governing equation, does not directly accommodate the moving nature of heat source. A reasonable approximation is to divide the laser travel on the substrate into many small time/load steps, and apply variable flux and boundary conditions in each time/load step. This approximates the quasi-steady state phenomena over the series of these time steps for the complete laser travel. This paper investigates the effects of the choice of time/load steps on the temperature evolution as well the computing times in the process.

This content is only available via PDF.
You do not currently have access to this content.