Biofouling is a process of major concern on naval vessels because it considerably affects their performance, maintenance and operational costs due to the fact that induces an increased hydrodynamic drag that leads to higher fuel consumption that in turn demands expensive cleaning procedures. A possible antibiofouling system can be designed by enhancing an existing impressed current cathodic protection system and taking advantage of the chlorine oxidants produced during its operation. In this work we present a design methodology for such a system, together with the associated multiphysics formulation framework based on a coupled chemical reactions — electric currents, species mass transport and electromigration model. This framework predicts the spatio-temporal distributions of the Chlorine species concentration that tend to inhibit the biofouling formations. We also demonstrate the applicability of the computational framework on a number of platforms ranging from simple panels up to a full scale boat. The computational results are compared with the actual field experiments.

This content is only available via PDF.
You do not currently have access to this content.