A rotating shaft supported on rolling element bearings is considered. The system is known to be modeled by a pair of coupled second order differential equations involving Hertzian contact force and thus parametric excitations. In studying the stability of the system, the static equilibrium in the direction of the static load is found to linearly increases with clearance. An approximate model is obtained and conditions of validity of such a model are discussed. Cage rotation speed, static load and clearance are revealed as key parameters. Considering the Floquet formalism for stability, in the domain (clearance,speed), it is found that the domain of stability decreases for large clearance and increases for small clearance. Higher number of rolling element as well as smaller static load positively affect the stability as well.

This content is only available via PDF.
You do not currently have access to this content.