This paper presents an algorithm for modeling the dynamics of multi-flexible body systems in closed kinematic loop configurations where the component bodies are modeled using the large displacement small deformation formulation. The algorithm uses a hierarchic assembly disassembly process in parallel implementation and a recursive assembly disassembly process in serial implementation to achieve highly efficient simulation turn-around times. The operational inertias arising from the rigid body modes of motion at the joint locations on a component body are modified to account for the nonlinear inertial effects and body forces arising from the body based deformations. Traditional issues, such as motion induced stiffness and temporal invariance of deformation field related inertia terms, are robustly addressed in this algorithm. The algorithm uses a mixed set of coordinates viz. (i) absolute coordinates for expressing the equations of motion of a body fixed reference frame, (ii) relative or internal coordinates to express the kinematic joint constraints and (iii) body fixed coordinates to account for the body’s deformation field. The kinematic joint constraints and the closed loop constraints are treated alike through the formalism of relative coordinates, joint motion spaces and their orthogonal complements. Verification of the algorithm is demonstrated using the planar fourbar mechanism problem that has been traditionally used in literature.

This content is only available via PDF.
You do not currently have access to this content.