This work presents an experimental study focused on a challenging signal interpretation issue arising in using wireless tri-axial sensors to measure acceleration components in rotating flexible rotor systems. Experiments with state of-the-art (modern technology microsystems) wireless accelerometers reveal that the dynamics of a rotating and-at the same time torsionally vibrating-flexible rotor system is perceived by the rotating sensor as a fast amplitude modulation of a slowly varying vibration. It is observed that the typical signal furnished by the rotating sensor consists of two distinct zones of harmonics: one is a broad band low frequency zone and is associated with the rigid body rotational motion, whereas the other zone contains distinct higher frequencies associated with torsional vibrations. The interesting result is the fact that in the frequency domain the fast torsional vibrations can be extracted sharply from the overall sensor signal. This is due to fact that the dynamics of the sensor output are characterized by slow and fast time scales. It turns out that the high harmonics of the rotating-and-vibrating system (generic motion) are very close to those of the non-rotating-but-torsionally vibrating system. A definite answer to a physics interpretation of the typical output of a rotating accelerometer (oscillator-based) is established by modeling the whole flexible rotor-sensor system as a singular perturbation coupled oscillators problem. This geometric mechanics modeling-analysis approach presents a global picture of the acceleration sensing property of stiff linear oscillators attached on rotating structures.
Skip Nav Destination
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 4–7, 2013
Portland, Oregon, USA
Conference Sponsors:
- Design Engineering Division
- Computers and Information in Engineering Division
ISBN:
978-0-7918-5597-3
PROCEEDINGS PAPER
Experimental Investigation With Wireless Sensors of the Nonlinear Interaction Between Rotational Motions and Torsional Vibrations in a Coupled Rigid Rotor-Flexible Rotor System
Ioannis T. Georgiou
Ioannis T. Georgiou
National Technical University of Athens, Athens, Greece
Search for other works by this author on:
Ioannis T. Georgiou
National Technical University of Athens, Athens, Greece
Paper No:
DETC2013-12813, V07BT10A006; 10 pages
Published Online:
February 12, 2014
Citation
Georgiou, IT. "Experimental Investigation With Wireless Sensors of the Nonlinear Interaction Between Rotational Motions and Torsional Vibrations in a Coupled Rigid Rotor-Flexible Rotor System." Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7B: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. Portland, Oregon, USA. August 4–7, 2013. V07BT10A006. ASME. https://doi.org/10.1115/DETC2013-12813
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
A New Low-Frequency Resonance Sensor for Low Speed Roller Bearing Monitoring
J. Vib. Acoust (February,2010)
Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response due to Foreign Object Damage (FOD) Events
J. Eng. Gas Turbines Power (July,2007)
Wind Turbine Gearbox Fault Detection Using Multiple Sensors With Features Level Data Fusion
J. Eng. Gas Turbines Power (April,2012)
Related Chapters
Reactor Shutdown and Reactor Restart
Fundamentals of CANDU Reactor Physics
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries