In the dynamic modeling and simulation of multi-flexible-body systems, large deformations and rotations has been a focus of keen interest. The reason is a wide variety of application area where highly elastic components play important role. Model complexity and high computational cost of simulations are the factors that contribute to the difficulty associated with these systems. As such, an efficient algorithm for modeling and simulation of systems undergoing large rotations and large deflections may be of great importance. We investigate the use of absolute nodal coordinate formulation (ANCF) for modeling articulated flexible bodies in a divide-and-conquer (DCA) framework. It is demonstrated that the equations of motion for individual finite elements or elastic bodies, as obtained by the ANCF, may be assembled and solved using a DCA type method. The current discussion is limited to planar problems but may easily be extended to spatial applications. Using numerical examples, we show that the present algorithm provides an efficient and robust method to model multibody systems employing highly elastic bodies.

This content is only available via PDF.
You do not currently have access to this content.