Störmer-Verlet integration scheme has many attractive properties when dealing with ODE systems in linear spaces: it is explicit, 2nd order, linear/angular momentum preserving and it is symplectic for Hamiltonian systems. In this paper we investigate its application for numerical simulation of the multibody system dynamics (MBS) by formulating Störmer-Verlet algorithm for the rotational rigid body motion in Lie-group setting. Starting from the investigations on the single free rigid body rotational dynamics, the paper introduces modified RATTLE integration scheme with the direct SO(3) rotational update. Furthermore, non-canonical Lie-group Störmer-Verlet integration scheme is presented through the different derivation stages. Several presented numerical examples show excellent conservation properties of the proposed geometric algorithm.

This content is only available via PDF.
You do not currently have access to this content.