Static grasping of a spherical object by two robot fingers is studied in this paper. The fingers may be rigid bodies or elastic beams, they may grasp the body with various orientation angles, and the tightening displacements may be linear or angular. Closed-form solutions for normal and tangential contact forces due to tightening displacements are obtained by solving compatibility equations, force-displacement relations based on Hertz contact theory, and equations of equilibrium. Solutions show that relations between contact forces and tightening displacements depend upon the orientation of the fingers, the elastic constants of the materials, and area moments of inertia of the beams.

This content is only available via PDF.
You do not currently have access to this content.