Mechanisms with reconfigurability have become a trend in development of multi-functional robots which can adapt to unexpected environments and perform complicated tasks. This paper presents a novel metamorphic parallel manipulator with the ability to change its mobility through the phase change of a variable-axis (vA) joint integrated in each limb. The platform has 6 DOFs in the source phase and can reconfigure its mobility to 5, 4 and 3 resorting to redundant actuation. This leads to reconfigurability and multi-functionality of the parallel manipulator characterized by the mobility configuration variation. A control strategy and a trajectory planning algorithm for reconfiguring the mobility configuration of the manipulator are proposed and simulations are carried out to identify a proper way of reconfiguration.

This content is only available via PDF.
You do not currently have access to this content.