David A. Huffman (1925–1999) is best known in computer science for his work in information theory, particularly Huffman codes, and best known in origami as a pioneer of curved-crease folding. But during his early paper folding in the 1970s, he designed and folded over a hundred different straight-crease origami tessellations. Unlike most origami tessellations designed in the past twenty years, Huffman’s straight-crease tessellations are mostly three-dimensional, rigidly foldable, and have no locking mechanism. In collaboration with Huffman’s family, our goal is to document all of his designs by reverse-engineering his models into the corresponding crease patterns, or in some cases, matching his models with his sketches of crease patterns. Here we describe several of Huffman’s origami tessellations that are most interesting historically, mathematically, and artistically.

This content is only available via PDF.
You do not currently have access to this content.