There is an analogy between the kinematic structures of proteins and robotic mechanisms. On the basis of this analogy, we have so far developed some methods for predicting the internal motions of proteins from their three-dimensional structural data in protein data bank (PDB). However, these methods are basically applicable to a single protein molecule. In this study, we extended these methods to apply them to systems that consist of multiple molecules including proteins (protein systems), and developed a computational framework for predicting the motions of the molecules. The model used in this method is a type of elastic network model. In particular, proteins are modeled as a robot manipulator constrained by the springs (the dihedral angles on the main chains correspond to the joint angles). The interactions between molecules are also modeled as springs. The basic concept for predicting the motions is based on the analysis of structural compliance. By applying statically balanced forces to the model in various directions, we extracted those motions with larger structural compliance. To reduce the computational time, we formulated the method with the prospect of efficient computation including parallel computation. In addition, we developed a preparatory computer program implementing the proposed algorithms, and analyzed some protein systems. The results showed that the proposed computational framework can efficiently analyze large protein systems.

This content is only available via PDF.
You do not currently have access to this content.