Gear drives are widely used in various mechanical systems. Therefore, the understanding for the failure mode of gear tooth provides the improvement of various machines. The wear on the tooth surface is one of the important failure modes for the gear drives. The tooth wear changes its profile, and frequently increases gear vibration and noise. However, there are many unclear phenomena about the wear on the tooth surface for the gear drive. In this study, we investigated wear of spur gear using a power circulating-type gear testing machine, and measured the change in tooth profile of the test gears. Furthermore, we developed a computer program to predict the amount of the wear on the tooth surface for the spur gears. The method employs two equations. One is based on the wear theory under lubricated condition that was deduced by Soda. The other is derived from the ploughing wear model. Using these equations, the wear depth on the tooth surface is calculated with the contact stress, the sliding velocity, the oil film thickness, etc. The calculated value of the wear agreed with the experimental data.

This content is only available via PDF.
You do not currently have access to this content.