In this study, an optimization methodology is proposed to systematically define optimal head-cutter geometry and machine tool settings to simultaneously minimize tooth contact pressures and angular displacement error of the driven gear and to reduce the sensitivity of face-hobbed spiral bevel gears to misalignments, while concurrently confining the loaded contact pattern within the tooth boundaries and avoiding any edge- or corner-contact conditions. The proposed optimization procedure relies heavily on a loaded tooth contact analysis for the prediction of tooth contact pressure distribution and transmission errors influenced by the misalignments inherent in the gear pair. The targeted optimization problem is a nonlinear constrained optimization problem. The core algorithm of the proposed nonlinear programming procedure is based on a direct search method. Effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. Drastic reductions in the maximum tooth contact pressure (62%) and in the transmission errors (70%) were obtained.

This content is only available via PDF.
You do not currently have access to this content.