In the field of robotics, the most essential requirement for successful navigation is an accurate and numerically inexpensive method for self-localization. This paper presents a method that exploits the principles of directional cosines to setup a rotation matrix to deal with a closed loop PI feedback based model. The system uses a 9 degree of freedom (9DOF) sensor and exploits the benefits of the accuracy of a 3-axis gyroscope by leveraging the measurement of a 3-axis accelerometer and 3-axis magnetometer, which compensates and corrects the accumulative drift generated by integrating the gyroscope velocity measurements. The results show that the method is relatively accurate with a small level of error when compared to vision based glyph recognition and tracking methods for self-localization and is a sustainable method for removing accumulative drift.

This content is only available via PDF.
You do not currently have access to this content.