Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. Mimicking nature offers more than just the observable aspects that conjure up engineering solutions performing similar functions, but also less obvious strategic and sustainable aspects. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical filtering. Functional representation and abstraction were used to place the biological system information in an engineering context, and facilitate the bioinspired design process. Inspiration from the physiology (function) of the guard cell coupled with the morphology (form) and physiology of tropomyosin resulted in multiple concept variants for the chemical sensor. The chemical sensor conceptual designs are provided along with detailed descriptions. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

This content is only available via PDF.
You do not currently have access to this content.