This paper investigates the impact of driver’s behavior on the fuel efficiency of a hybrid electric vehicle (HEV) and its powertrain components, including engine, motor, and battery. The simulation study focuses on the investigation of power request, power output, energy loss, and operating region of powertrain components with the change of driver’s behavior. It is well known that a noticeable difference between the sticker number fuel economy and actual fuel economy will happen when a driver drives aggressively. To simulate aggressive driving, the input driving cycles are scaled from the baseline driving cycles to increase the level of acceleration/deceleration. With scaled aggressive driving cycles, the simulation result shows a significant change of HEV equivalent fuel economy. In addition, the high power demands of aggressive driving cause engine to operate within a higher fuel rate region. Furthermore, the engine is started and shut down frequently due to the large instantaneous power request peaks, which result in high energy loss. The simulation study of the impact of aggressive driving on the HEV fuel efficiency is conducted for a power-split hybrid electric vehicle using powertrain simulation and analysis software Autonomie developed by Argonne National Laboratory. The performance of the major powertrain components is analyzed when the HEV operates at different level of aggressiveness. The simulation results provide useful information to identify the major factors that need to be included in the vehicle control design to improve the fuel efficiency of HEVs under aggressive driving.

This content is only available via PDF.
You do not currently have access to this content.