We report the results of planning and experimental validation of femoroplasty — augmentation of mechanical properties of the bone using polymethylmethacrylate (PMMA) bone cement injection — on osteoporotic femurs. For six pairs of osteoporotic femurs, finite element (FE) models were created using computed tomography (CT) scan data and an evolutionary method was used to optimize the cement pattern in one of the models from each pair. Using a particle method and the CT data, cement diffusion was modeled for several hypothetical augmentations and the one most closely matching the optimized pattern was chosen as the best plan. We used intra-operative navigation and a custom-designed injection device to deliver the cement into the bones precisely according to the plan. All femurs were then tested mechanically in a configuration simulating a fall to the side. Augmentation with this technique resulted in an increase in the yield load (28%) and yield energy (142%) compared to the control specimens, while only 9.8ml of cement was injected on average. Results support our hypothesis that significant improvements in the mechanical properties of osteoporotic femurs can be achieved by using minimal, and hence safe, amounts of PMMA bone cement.

This content is only available via PDF.
You do not currently have access to this content.