Implicit boundary method enables the use of background mesh to perform finite element analysis while using solid models to represent the geometry. This approach has been used in the past to model 2D and 3D structures. Thin plate or shell-like structures are more challenging to model. In this paper, the implicit boundary method is shown to be effective for plate elements modeled using Reissner-Mindlin plate theory. This plate element uses a mixed formulation and discrete collocation of shear stress field to avoid shear locking. The trial and test functions are constructed by utilizing approximate step functions such that the boundary conditions are guaranteed to be satisfied. The incompatibility of discrete collocation with implicit boundary approach is overcome by using irreducible weak form for computing the stiffness associated with essential boundary conditions. A family of Reissner-Mindlin plate elements is presented and evaluated in this paper using several benchmark problems to test their validity and robustness.

This content is only available via PDF.
You do not currently have access to this content.