In recent years the interest towards electric vehicles has increased. Among the different layout of the electric powertrain, four in-wheel motors appear to be one of the most attractive. This configuration in fact allows to re-design inner spaces of the vehicle and presents, as an embedded feature, the possibility of independently distributed braking and driving torques on the wheels in order to generate a yaw moment able to improve vehicle handling (torque vectoring). The present paper presents and compares two different torque vectoring control strategies for an electric vehicle with four in-wheel motors. Performances of the control strategies are evaluated by means of numerical simulations of open and closed loop maneuvers, also taking into account their energetic efficiency.

This content is only available via PDF.
You do not currently have access to this content.