A design strategy to simultaneously mitigate the effects of both shock and vibration is introduced. The proposed isolation mount is a passive, transitioning mount and consists of sliding friction elements in series connection with springs and dampers. A linear and a displacement dependent viscous damper are considered, while linear, hardening and softening springs, are considered. The isolation mount’s response is determined by numerical simulation. For a single-degree-of-freedom system, the tradeoff curve for a half-sine velocity input is determined, as is the nonlinear transmissibility for harmonic excitation. The method is found to achieve satisfactory isolation against shock events as well as persistent harmonic inputs. The suggested mount configuration was also found to have good performance against a ‘combined’ input with both resonant and transient content.

This content is only available via PDF.
You do not currently have access to this content.