In this study we consider a slacked CNT and analyze the nonlinear response under electrostatic and electrodynamic actuation. We introduce a reduced-order model, which takes into account the single-mode dynamics and is derived via the Ritz method and the Padé approximation. The overall scenario of the device behavior is investigated when both the frequency and the electrodynamic voltage are varying. Extensive numerical simulations are performed by the combined use of frequency response diagrams, attractor-basins phase portraits, and frequency-dynamic voltage behavior chart. Our aim is that of illustrating the richness of the nonlinear events that may undergo in the device due to the coupling of mechanical and electrical nonlinearities. We observe that the CNT exhibits coexisting competing attractors, which lead to a versatile behavior. We examine the multistability in detail. The response is explored not only at low electrodynamic voltages, where the safe jump between attractors is ensured, but also at large electrodynamic excitation, where the inevitable escape (dynamic pull-in) becomes impending. We detect the theoretical boundaries of appearance and disappearance of the main attractors, which provide a complete description of the response.

This content is only available via PDF.
You do not currently have access to this content.