Manipulation of magnetic nanoparticles has many applications in several fields and the behaviors of magnetic nanoparticles subjected to rotating or alternating magnetic fields attracted more attention from biomedical applications. In an aqueous solution containing bio-functionalized magnetic nanoparticles, due to the interaction between biomolecules, these nanoparticles agglomerate and form clusters with various sizes and shapes. In this study, the behaviors of magnetic nanoparticle clusters in an aqueous solution under rotating magnetic fields were investigated. Due to the interaction between the rotating magnetic field and the net magnetic dipole moment, the clusters were subjected to forced vibration. Two motion modes of clusters were observed as the magnetic field rotated. These two modes are rotation and oscillation. The diameters of the magnetic clusters with rotational or oscillational motions were measured. A critical diameter range of magnetic cluster was defined and the range is between 10.21 μm and 6.17 μm that could be used to distinguish rotation and oscillation of clusters.

This content is only available via PDF.
You do not currently have access to this content.