This paper presents a new and practical method for mapping and annotating indoor environments for mobile robot use. The method makes use of 2D occupancy grid maps for metric representation, and topology maps to indicate the connectivity of the ‘places-of-interests’ in the environment. Novel use of 2D visual tags allows encoding information physically at places-of-interest. Moreover, using physical characteristics of the visual tags (i.e. paper size) is exploited to recover relative poses of the tags in the environment using a simple camera. This method extends tag encoding to simultaneous localization and mapping in topology space, and fuses camera and robot pose estimations to build an automatically annotated global topo-metric map. It is developed as a framework for a hospital service robot and tested in a real hospital. Experiments show that the method is capable of producing globally consistent, automatically annotated hybrid metric-topological maps that is needed by mobile service robots.

This content is only available via PDF.
You do not currently have access to this content.