The paper discusses mobility and singularities of the Exechon three-degree-of-freedom (dof) parallel mechanism (PM) on which a family of parallel kinematic machines is based. Exechon designs are used by a number of machine-tool makers. A new version of the manipulator has been developed as a component of a mobile self-reconfigurable fixture system within an inter-European project. The PM has two UPR (4-dof) legs, constrained to move in a common rotating plane, and an SPR (5-dof) leg. The paper focuses on the constraint and singularity analysis of the mechanism. The screw systems of end-effector freedoms and constraints are identified. The singular configurations are classified in detail and their geometric interpretation is discussed. The velocity kinematics and the Jacobian operator are formulated via a screw-system approach. A fully parameterized package of Maple tools has been developed and used to visualize singularities and their consequences.

This content is only available via PDF.
You do not currently have access to this content.