This paper describes a fully compliant constant-force micro-mechanism that enables dual-stage motion for nanoinjection. Nanoinjection is a recently developed process for delivering DNA into mouse zygotes via electrostatic accumulation and release of the DNA onto a microelectromechanical system (MEMS) lance.

The fully compliant constant-force nanoinjector is a concatenation of two separate mechanisms: a six-bar mechanism with compliant lamina-emergent torsional (LET) joints to raise the lance, and a pair of constant-force crank-sliders with LET joints positioned on either side of the six-bar mechanism to drive the lance forward.

The fully compliant nanoinjector exhibits self-reconfiguring metamorphic motion to first raise the lance to the midline of the zygote and then translate the lance forward with a controlled motion. This dual-stage motion is necessary for the lance to pierce the zygote without causing damage to the cell membrane.

The device achieves two sequential displacement behaviors in a compliant mechanism fabricated from a single, continuous piece of material.

This content is only available via PDF.
You do not currently have access to this content.