It is important for engineers to understand the capabilities and limitations of the technologies they consider for use in their systems. Several researchers have investigated approaches for modeling the capabilities of a technology with the aim of supporting the design process. In these works, the information about the physical form is typically abstracted away. However, the efficient generation of an accurate model of technical capabilities remains a challenge. Pareto frontier based methods are often used but yield results that are of limited use for subsequent decision making and analysis. Models based on parameterized Pareto frontiers—termed Technology Characterization Models (TCMs)—are much more reusable and composable. However, there exists no efficient technique for modeling the parameterized Pareto frontier. The contribution of this paper is a new algorithm for modeling the parameterized Pareto frontier to be used as a model of the characteristics of a technology. The proposed algorithm uses fundamental concepts from multiobjective genetic optimization and machine learning to generate a model of the technology frontier.

This content is only available via PDF.
You do not currently have access to this content.