The present paper describes a methodology for the inverse identification of the complete set of parameters associated with the Weirstrass-Mandelbrot (W-M) function that can describe any fractal scalar field distribution of measured data defined within a volume. Our effort is motivated by the need to be able to describe a scalar field quantity distribution in a volume in order to be able to represent analytically various non-homogeneous material properties distributions for engineering and science applications. Our method involves utilizing a refactoring of the W-M function that permits defining the characterization problem as a high dimensional singular value decomposition problem for the determination of the so-called phases of the function. Coupled with this process is a second level exhaustive search that enables the determination of the density of the frequencies involved in defining the trigonometric functions involved in the definition of the W-M function. Numerical applications of the proposed method on both synthetic and actual volume data, validate the efficiency and the accuracy of the proposed approach. This approach constitutes a radical departure from the traditional fractal dimension characterization studies and opens the road for a very large number of applications and generalizes the approach developed by the authors for fractal surfaces to that of fractal volumes.

This content is only available via PDF.
You do not currently have access to this content.