Capturing the in-process workpiece geometry generated during machining is an important part of tool path verification and increasingly the physics-based simulation of cutting forces used in Virtual Machining. Swept volume generation is a key supporting methodology that is necessary for generating these in-process states. Hole milling is representative of one class of milling operation where the swept volume is continuously intersecting. Due to this it is impossible to decompose the tool path into non-intersecting regions which is typically the approach used in solid model based swept volume generation. In this paper an approach to generating NURBS based solid models for self-intersecting swept volumes generated during hole milling is presented. NURB surfaces are generated that compactly represent the surfaces of the swept volume. This utilizes the geometry of the helical curve as opposed to a linearly interpolated tool path that is used for more generic approaches to generating swept volumes. Examples applying the approach to various types of cutter geometries used in milling are presented.

This content is only available via PDF.
You do not currently have access to this content.