This paper presents a new approach for tele-fabrication where a physical object is scanned in one location and fabricated in another location. This approach integrates three-dimensional (3D) scanning, geometric processing of scanned data, and additive manufacturing technologies. In this paper, we focus on a set of direct geometric processing techniques that enable the tele-fabrication. In this approach, 3D scan data is directly sliced into layer-wise contours. Sacrificial supports are generated directly from the contours and digital mask images of the objects and the supports for Stereolithography Apparatus (SLA) processes are then automatically generated. The salient feature of this approach is that it does not involve any intermediate geometric models such as STL, polygons or non-uniform rational B-splines that are otherwise commonly used in prevalent approaches. The experimental results on a set of objects fabricated on several SLA machines confirms the effectiveness of the approach in faithfully tele-fabricating physical objects.

This content is only available via PDF.
You do not currently have access to this content.