In our earlier work we have proposed a collaboration system for modular product design. One of the main components of the system is a design repository to which suppliers can upload their component descriptions using machine-readable, interface-based component description language, so that manufacturers can refer to the descriptions during product design phases. A mathematical formulation for modular product design has been proposed based on Artificial Intelligence Planning framework. The proposed Binary Integer Programming formulation generates the optimal design of a product. The optimal design consists of multiple components that are compatible with each other in terms of input and out interfaces. However, the mathematical approach is faced with scalability issue. The development of a heuristic algorithm that generates a high quality solution within a reasonable amount of time is the final goal of the research. In this paper, we propose an algorithmic approach based on branch-and-bound method as an intermediate step for the final goal. This paper describes the details of the proposed branch-and-bound algorithm using a case study and experimental results are discussed.

This content is only available via PDF.
You do not currently have access to this content.