This paper addresses the stochastic modeling of the stiffness matrix of slender uncertain curved beams that are forced fit into a clamped-clamped fixture designed for straight beams. Because of the misfit with the clamps, the final shape of the clamped-clamped beams is not straight and they are subjected to an axial preload. Both of these features are uncertain given the uncertainty on the initial, undeformed shape of the beams and affect significantly the stiffness matrix associated with small motions around the clamped-clamped configuration. A modal model using linear modes of the straight clamped-clamped beam with a randomized stiffness matrix is employed to characterize the linear dynamic behavior of the uncertain beams. This stiffness matrix is modeled using a mixed nonparametric-parametric stochastic model in which the nonparametric (maximum entropy) component is used to model the uncertainty in final shape while the preload is explicitly, parametrically included in the stiffness matrix representation. Finally, a maximum likelihood framework is proposed for the identification of the parameters associated with the uncertainty level and the mean model, or part thereof, using either natural frequencies only or natural frequencies and mode shape information of the beams around their final clamped-clamped state. To validate these concepts, a simulated, computational experiment was conducted within Nastran to produce a population of natural frequencies and mode shapes of uncertain slender curved beams after clamping. The application of the above concepts to this simulated data led to a very good to excellent matching of the probability density functions of the natural frequencies and the modal components, even though this information was not used in the identification process. These results strongly suggest the applicability of the proposed stochastic model.
Skip Nav Destination
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 12–15, 2012
Chicago, Illinois, USA
Conference Sponsors:
- Design Engineering Division
- Computers and Information in Engineering Division
ISBN:
978-0-7918-4500-4
PROCEEDINGS PAPER
Stochastic Modal Models of Slender Uncertain Curved Beams Preloaded Through Clamping
Javier Avalos,
Javier Avalos
Arizona State University, Tempe, AZ
Search for other works by this author on:
Lanae A. Richter,
Lanae A. Richter
Arizona State University, Tempe, AZ
Search for other works by this author on:
X. Q. Wang,
X. Q. Wang
Arizona State University, Tempe, AZ
Search for other works by this author on:
Raghavendra Murthy,
Raghavendra Murthy
Arizona State University, Tempe, AZ
Search for other works by this author on:
Marc P. Mignolet
Marc P. Mignolet
Arizona State University, Tempe, AZ
Search for other works by this author on:
Javier Avalos
Arizona State University, Tempe, AZ
Lanae A. Richter
Arizona State University, Tempe, AZ
X. Q. Wang
Arizona State University, Tempe, AZ
Raghavendra Murthy
Arizona State University, Tempe, AZ
Marc P. Mignolet
Arizona State University, Tempe, AZ
Paper No:
DETC2012-71169, pp. 887-895; 9 pages
Published Online:
September 9, 2013
Citation
Avalos, J, Richter, LA, Wang, XQ, Murthy, R, & Mignolet, MP. "Stochastic Modal Models of Slender Uncertain Curved Beams Preloaded Through Clamping." Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 24th Conference on Mechanical Vibration and Noise, Parts A and B. Chicago, Illinois, USA. August 12–15, 2012. pp. 887-895. ASME. https://doi.org/10.1115/DETC2012-71169
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Quantum-theoretic Shapes of Constituents of Systems in Various States
J. Energy Resour. Technol (March,2003)
Uncertainty of Integral System Safety in Engineering
ASME J. Risk Uncertainty Part B (June,2022)
Related Chapters
Constrained Noninformative Priors with Uncertain Constraints: A Hierarchical Simulation Approach (PSAM-0437)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)