A complex cable-stayed bridge that consists of a simply-supported four-cable-stayed deck beam and two rigid towers is studied. The nonlinear and linear partial differential equations that govern the motions of the cables and segments of the deck beam, respectively, are derived, along with their boundary and matching conditions. The undamped natural frequencies and mode shapes of the linearized model of the cable-stayed bridge, which includes both the transverse and longitudinal vibrations of the cables, are determined. Numerical analysis of the natural frequencies and mode shapes of the cable-stayed bridge is conducted for a symmetrical case with regards to the sizes of the components of the bridge and the initial sags of the cables. The results show that there are very close natural frequencies and localized mode shapes.

This content is only available via PDF.
You do not currently have access to this content.