This paper is to present findings from a theoretical study on free vibration and stability of a rotor-bearing-housing system. The rotor is cyclic symmetric and spinning at constant speed, while the housing is stationary and flexible. Moreover, the rotor and housing are assembled via multiple, linear, elastic bearings. For the rotor and the housing, their mode shapes are first obtained in rotor-based and ground-based coordinate systems, respectively. By discretizing the kinetic and potential energies of the rotor-bearing-housing system through use of the mode shapes, a set of equations of motion appears in the form of ordinary differential equations with periodic coefficients. Analyses of the equations of motion indicate that instabilities could appear at certain spin speed in the form of combination resonances of the sum type. To demonstrate the validity of the formulation, two numerical examples are studied. For the first example, the spinning rotor is an axisymmetric disk and the housing is a square plate with a central shaft. Moreover, the rotor and the housing are connected via two linear elastic bearings. Instability appears in the form of coupled vibration between the stationary housing and spinning rotor through three different formats: rigid-body rotor translation, rigid-body rotor rocking, and elastic rotor modes that present unbalanced inertia forces or moments. For the second example, the rotor is cyclic symmetric in the form of a disk with four evenly spaced slots. The housing and bearings remain the same. When the rotor is stationary, natural frequencies and mode shapes predicted from the formulation agree well with those predicted from a finite element analysis, which further ensures the validity of the formulation. When the cyclic symmetric rotor spins, instability appears in the same three formats as in the case of axisymmetric rotor. Number of instability zones, however, increases because the cyclic symmetric rotor has more elastic rotor modes that present unbalanced inertia forces or moments.

This content is only available via PDF.
You do not currently have access to this content.