Wake vortices produced by the lifting surfaces of large aircraft can have catastrophic effects on aircraft that follow too close behind. Many incidents have been blamed on wingtip vortices in the past several decades. Therefore, vortex detection is important for enhancing airport productivity by allowing adoptive spacing and for increasing the safety of all aircraft operating around the airport by alerting controllers that hazardous conditions may exist near the runways. Many methods have been developed for detecting wake vortices. However, there is a lack of a literature review to summarize all the methods and compare their advantages and drawbacks. Thus, the purpose of this paper is to review these technologies and to summarize their strengths and weaknesses. There are two main methods available in the literature: active and passive detection methods. Active detection methods include LIDAR (LIGHT Detection And Ranging), RADAR (Radio Detection and Ranging), and SODAR (Sonic Detection And Ranging). Passive detection methods include microphone systems, opto-acoustic systems, and ultrasonic detection of circulation. Although vortex detection methods are available, due to military and scientific usage, many researchers are still investigating new methods that are more effective.

This content is only available via PDF.
You do not currently have access to this content.