Kinesin is a processive molecular motor that transports various cellular cargoes by converting chemical energy into mechanical movements. Although the motion of a single molecule has been characterized in several studies, the dynamics of collective transports remains unresolved. Since the fluctuating load acting on each motor is an important factor in the collective transport, the relation between the varying force and the chemical reaction of kinesin is considered using a stochastic mechanistic model. Several metrics are developed to measure the correlation among the motion of the motors, the force distribution, and the power loss. It is shown that both large external load and stiff cargo linkers cause highly correlated motions of motors. However, these correlated motions do not lead to faster collective transport.

This content is only available via PDF.
You do not currently have access to this content.