This paper concerns optimal placement of discrete piezoelectric sensors and actuators for active vibration control, using a genetic algorithm based on minimization of linear quadratic index as an objective function. A new method is developed to get state space matrices for simple and complex structures with bonded sensors and actuators, using the ANSYS finite element package taking into account piezoelectric mass, stiffness and electromechanical coupling effects.

The state space matrices for smart structures are highly important in active vibration control for the optimisation of sensor and actuator locations and investigation of open and closed loop system control response, both using simulation and experimentally.

As an example, a flexible flat plate with bonded sensor/actuator pairs is represented in ANSYS using three dimensional SOLID45 elements for the passive structure and SOLID5 for the piezoelectric elements, from which the necessary state space matrices are obtained.

To test the results, the plate is mounted as a cantilever and two sensor/actuator pairs are located at the optimal locations. These are used to attenuate the first six modes of vibration using active vibration reduction based on a classical and optimal linear quadratic control scheme. The plate is subject to forced vibration at the first, second and third natural frequencies and represented in ANSYS using a proportional derivative controller and compared with a Matlab model based on ANSYS state space matrices using linear quadratic control. It is shown that the ANSYS state space matrices describe the system efficiently and correctly.

This content is only available via PDF.
You do not currently have access to this content.