In turbo machinery design it is important to avoid vibrations that can destroy the turbine in the last resort. The rotating structure is exposed to periodic excitation forces. Two main types of periodic excitation can be distinguished. Flutter is the effect when mass flow forces couple with a natural vibration mode. The result is a negative damping coefficient and amplitudes will rise up to malfunction of the structure. The engine order excitation is a periodic excitation where the force signal is directly related to the speed of the rotor. A forced response calculation gives information about the blade vibration. Nonlinear coupling, i.e. friction coupling, between blades is used to increase damping of the bladed disk. Dynamic analysis of turbine blades with nonlinear coupling is a complex task and computer simulations are inevitable. Various techniques have been developed to reduce computational effort. The cyclic symmetry approach assumes each blade around the disk to be identical. Thus only one sector of the disk is sufficient to compute the steady state solution of the whole turbine blading. However, it has been observed that mistuning of blades reduces the flutter instability. On the other hand statistical mistuning can lead to dangerously high forced response amplitudes due to mode localization. A compromise is intentional mistuning. The simplest approach is alternate mistuning with every other blade exhibiting identical mechanical properties. This work explains in detail how a turbine bladed disk can be modeled when alternate mistuning is applied intentionally. Cyclic symmetry is used and each sector comprises two blades. This untypical choice of the sector size has significant impact on results of a cyclic modal analysis. Simulation results show the influence of alternate mistuned turbine bladings which are coupled by underplatform damper elements.

This content is only available via PDF.
You do not currently have access to this content.